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Abstract
In this paper we study the anomalous 0.7 structure in high quality ballistic one-dimensional
hole systems. Hole systems are of interest because of their large effective mass, strong
spin–orbit coupling, as well as having spin 3/2 compared to spin 1/2 for electrons. We observe
remarkably clean conductance quantization in a variety of different samples, and a strong
feature at ∼0.7 × 2e2/h, which shows a similar temperature and density dependence to the 0.7
feature observed in electron systems. In contrast to the case for electrons, the strong spin–orbit
coupling results in an anisotropic Zeeman splitting, which we use to probe the 0.7 feature and
the associated zero-bias anomaly. Our results indicate that the 0.7 feature and the zero-bias
anomaly are related, and both are suppressed by spin polarization. These results place valuable
constraints on models of the microscopic origins of the 0.7 feature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One-dimensional (1D) electron quantum wires and quantum
point contacts (QPCs) have been extensively studied for the
past 20 years [1, 2]. While the quantization of the 1D
ballistic conductance g = i × 2e2/h (where i is an integer)
is well established, the origin of an unexpected feature at
∼0.7 × 2e2/h remains an outstanding anomaly. The so-
called ‘0.7 structure’ was first studied in detail by Thomas
et al [3], although it can be seen in the first measurements
of 1D electron systems from 1988 [1]. The 0.7 structure is
often observed in electron point contacts, and is believed to
arise from electron–electron interactions and spin. However
despite extensive study the microscopic origins of the 0.7
structure remain elusive, with explanations including phonon
scattering [4], 1D Wigner crystallization, enhanced scattering,
and the Kondo effect [5, 6].

Hole systems are of interest because of their large effective
mass and strong spin–orbit coupling. The large hole mass,
m∗ = 0.2–0.4me, quenches the kinetic energy and enhances
many body interaction effects, which are parameterized by
rs ∝ m∗/

√
ns. In contrast to 2D electron systems which are

limited to rs � 5, in 2D hole systems rs � 10 can easily be
achieved. For example rs = 1.7 for 2D electrons at a typical
density of 1011 cm−2, whereas for holes rs is closer to 10. The
strong spin–orbit coupling makes it possible to manipulate the
hole spin with an applied electric field, and the total angular
momentum j = 3/2 gives low dimensional hole systems a
much richer spin physics than their electron counterparts [7].
However to date there have been comparatively few studies
of hole quantum wires, primarily due to the difficulties in
fabricating stable high mobility devices [8–10]. In this work
we present data from high quality spin-3/2 hole quantum
wires, focussing on the 0.7 structure and how it compares to
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Figure 1. (a) Schematic band diagram for bulk GaAs, showing the
split-off (SO), light-hole (LH), heavy-hole (HH), and conduction
bands. (b) Schematic band diagram for a 2D hole system where the
HH–LH degeneracy is lifted at k = 0 due to the 2D confinement.

that observed in spin-1/2 electron quantum wires. We address
the following questions:

• Is there a 0.7 structure in hole quantum wires?
• How do the strong hole–hole interactions affect the 0.7

structure?
• The single particle 1D hole subbands have an anisotropic

Zeeman splitting, which we use to probe the 0.7 structure:
if it is related to spin, it should show a similar anisotropy.

2. Hole bandstructure and sample fabrication

2.1. An overview of the hole bandstructure

The GaAs valence band structure is significantly more complex
than the simple parabolic conduction band for electrons, as
shown in figure 1(a) for bulk GaAs [7]. Conduction band
electrons originate from s-like l = 0 states, and are not affected
by the l.s spin–orbit interaction to leading order. Electrons
have intrinsic angular momentum (spin) h̄/2, with a quantized
projection in any direction of mS = ±h̄/2. In contrast
the valence band states are p-like, with l = 1. The spin–
orbit interaction lifts the six-fold degeneracy of the valence
band states at k = 0, leading to a splitting �0 between the
valence band states with total angular momentum j = 3/2 (the
light and heavy holes) and those with j = 1/2 (the split-off
band). Holes from the two uppermost valence band branches
have an intrinsic angular momentum (spin) 3h̄/2, and have 4
projections m j = ±3h̄/2 (heavy holes, HH) and m j = ±h̄/2
(light holes, LH).

Confining the holes to a 2D system lifts the light-hole
heavy-hole degeneracy at k = 0, as depicted in figure 1(b),
so that the HH (m J = ±3/2) band becomes the lowest
energy hole band. The bandstructure becomes quite complex
at higher energies, due to an anticrossing of the LH and HH
bands. This anticrossing comes about because the hole mass
is anisotropic: the effective mass of the m j = ±3/2 ‘heavy’
holes is lighter for motion in the 2D plane than that of the
m j = ±1/2 ‘light’ holes. Fortunately in 2D hole systems
we are far from this anticrossing: the Fermi energy is small
(EF ∼ 1 meV), significantly less than the light-hole heavy-hole
splitting (�lh−hh ∼ 10 meV), so that only the heavy-hole band
is occupied. A nice treatment of the 2D hole bandstructure is
given in the authoritative book by Winkler [7].

The response of holes to an external magnetic field is also
different to electrons. Spin-1/2 electrons behave like a dipole
in a magnetic field, with a magnetic moment μB and a Zeeman
splitting of the energy levels given by gμB B . In contrast spin-
3/2 holes are described by dipole, quadrupole and octupole
moments [11]. This has many implications—for example the
spin splitting of hole states is highly anisotropic, depending on
the orientation of the magnetic field.

When confined to one-dimensional quantum wires the
electronic and spin properties of holes become very sensitive to
the geometry of the quantum wire and the characteristic length
scales [12–14]. For example, we can examine the nature of
the band-edge states at k = 0 in two limiting cases: in a very
narrow quantum wire, such as a self assembled nanowire, the
lowest energy hole state changes character, with the m j = 1/2
‘light’-hole band becoming lower in energy than the m j = 3/2
‘heavy’-hole band (the opposite of the 2D case). The other
limit is where the 2D confinement from the quantum well
(∼10 nm in our case) is stronger than the lateral quantum wire
confinement (∼100 nm in our quantum wires). In this case
the ground state remains predominantly m j = 3/2 HH-like,
although there are strong effects of the 1D confinement on the
electronic and spin properties of the holes in the quantum wire.

One of the key advantages of studying 1D hole systems
is that we study the depopulation of the 1D subbands, and
therefore are primarily examining the behaviour at the band-
edge where k = 0 in the direction of motion. This is in
contrast to transport measurements of 2D or 3D systems, which
probe the hole states at finite k. This is advantageous since the
effect of an applied magnetic field on states with finite k, in the
presence of strong spin–orbit coupling and 1D confinement, is
highly complex. Thus studying 1D hole systems allows us to
probe the hole states, and their response to a magnetic field, in
a manner that is difficult to do in higher dimensions.

2.2. Sample fabrication

Hole quantum wires were fabricated from high quality
two-dimensional hole systems formed in GaAs/AlGaAs
heterostructures grown on (311)A GaAs substrates. The
first heterostructure, shown in figure 2(a), is an ‘induced’
single heterojunction in which the holes are introduced by
a negative bias applied to a degenerately doped p+-GaAs
gate electrode, instead of by modulation doping the AlGaAs
layer [15]. This approach avoids unwanted scattering from
remote ionized impurities, and allows the 2D hole density to
be varied over a wide range. The holes are confined in a
triangular potential well, with densities from 1.6 × 1010 to
1.9×1011 cm−2 and mobilities up to 700 000 cm2 V−1 s−1. To
define a quantum wire the p+-GaAs layer is divided into three
electrically separate gates using electron beam lithography and
a shallow etch, as indicated in figure 2(b), with the quantum
wire aligned along the [233] direction [16]. The hole density
in the 1D quantum wire and the 2D reservoirs on the left and
right of it are controlled with a negative bias applied to the
central top-gate. At the same time, a positive bias applied to
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Figure 2. Schematic of the heterostructures used to make the two hole quantum wires discussed in this paper. (a) The ‘undoped’
heterostructure R165 in which a high mobility 2D hole system is formed by applying a negative bias to the p-GaAs gate. (b) Schematic of the
three p-GaAs gates used to define a quantum wire at the GaAs/AlGaAs heterojunction. (c) The double quantum well heterostructure T483, in
which holes are supplied by modulation doping. The top and bottom quantum wells are separated by a thick AlGaAs barrier to prevent
inter-well tunnelling. (d) Schematic of the gate layouts used to define the quantum wires. The two side-gates control the wire width, and a
central mid-gate controls the hole density in the upper quantum wire. The back-gate is used to control the density in the lower quantum wire,
and can be used to deplete the lower quantum wire completely so that the upper quantum wire can be measured independently. The
measurements presented here are from the upper quantum wire.

the two side-gates controls the effective width of the 1D wire
formed 200 nm below the gate6.

The second type of heterostructure is a modulation doped
double quantum well in which two sheets of high mobility
holes are formed in 20 nm wide GaAs quantum wells separated
by a 30 nm AlGaAs barrier (figure 2(c)). The barrier is
sufficiently thick that there is no tunnelling between the two
2D hole layers. The as-grown hole densities in the two
wells are 1 × 1011 cm−2 with peak mobilities in excess of
106 cm2 V−1 s−1. Ohmic contacts are made to both 2D hole
systems in parallel, and an overall back-gate can be used to
control the hole density in the lower quantum well. Two
parallel quantum wires are defined along the [2̄33] direction
by Schottky gates, as shown in figure 2(d), using electron
beam lithography and thermal evaporation techniques [17]. A
combination of front and back-gate biases allows the transport
properties of the top or bottom quantum wire to be measured
in isolation. A positive bias applied to the two side-gates
defines the one-dimensional channels in the two quantum
wells. The central top-gate is used to control the density
in the upper quantum wire, and the back-gate controls the
density in the lower quantum wire. Thus the top quantum
wire can be measured in isolation by depleting the lower wire
with the back-gate. In addition a separate depletion gate can
be used to stop the current flow in the top quantum well,
even when it is not depleted. This allows the lower quantum
wire to be measured without having to deplete the upper
wire [17, 18], and can be used to measure the compressibility
of 1D systems [18]. All measurements were performed using
low frequency ac lock-in techniques at the base temperature
of a dilution refrigerator (25 mK), unless otherwise
stated.

6 Note that it is not possible to independently control the carrier density or
quantum wire width with a single gate. However a combination of gates, such
as employed here, can be used to achieve this (cf [24]).

3. Ballistic transport and the 0.7 structure in hole
quantum wires

3.1. Ballistic transport in hole quantum wires

We begin by showing typical examples of the clean
conductance quantization observed in hole quantum wires
fabricated from both quantum wells and single heterojunctions.
The inset to figure 3(a) shows an electron micrograph of
the Schottky gates used to define the quantum wire on the
modulation doped double quantum well device [17]. A central
mid-gate (MG) controls the hole density in the wire, while
the two side-gates (SG) are used to adjust the wire width. In
this paper we only show data from measurements of the upper
quantum wire, biasing the back-gate to VBG = 2.5 V to deplete
the lower quantum well. The data in figure 3(a) shows the
conductance of the upper quantum wire as a function of the
side-gate bias. A constant series resistance due to the ohmic
contacts, wiring and external apparatus has been subtracted
from the two-terminal measurements. We observe up to 11
clean conductance plateaux and a strong 0.7 structure [17],
without any of the resonances or artefacts that have hampered
previous studies of lower mobility hole devices [8, 10]. Similar
data is obtained for the quantum wire in the lower quantum
well (not shown) [19, 20]. The device and data are highly
robust, exhibiting the same characteristics across multiple
thermal cycles.

The inset to figure 3(b) shows an electron micrograph of
the gates used to define the quantum wire on the undoped
single heterojunction [16]. The gate structure and operation is
similar to that of the double quantum well heterostructure: the
side-gates are used to pinch-off the quantum wire, while the
overall top-gate (TG) controls the hole density in the quantum
wire as well as in the 2D reservoirs. The peak mobility in
this device structure is slightly lower than in the modulation
doped structure, but is high enough that the device shows 7
clean conductance steps, with additional structure below the

3



J. Phys.: Condens. Matter 20 (2008) 164205 A R Hamilton et al

10

8

6

4

2

0
 g

 (
2e

2 /h
)

4.03.63.22.8

Split gate bias (V)

8

6

4

2

0

 g
 (

2e
2 /h

)

1.20.80.40.0

Side gate bias (V)

(a) (b)

Figure 3. Conductance quantization in two hole quantum wires: (a) The quantum wire fabricated on the T483 modulation doped double
quantum well heterostructure. The data shows the conductance of the upper quantum wire as a function of the side-gate bias, with
VBG = 2.5 V and VMG = −0.225 V. The inset shows an electron micrograph of the Schottky gate pattern; the light regions are the metal gates.
(b) The quantum wire fabricated on the R165 undoped single heterojunction, with VTG = −0.48 V. The inset shows the gate pattern; the light
regions are the degenerately doped p-GaAs gates.
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Figure 4. Density dependence of the ‘0.7 structure’ in electron and hole samples. (a) Evolution of the 0.7 structure in an electron quantum
wire as the density of the 2D electron gas is varied from 1.8 to 2.4 × 1011 cm−2. (b) Similar data for the upper hole quantum wire in sample
T483 as the carrier density is increased with the mid-gate bias. VMG is stepped from −0.175 V (on the left) to −0.475 V (on the right) in
0.05 V increments. (c) Data for a hole quantum wire in the single heterojunction R165, as the 2D hole density is varied with the mid-gate bias
from 9.9 × 1010 to 1.35 × 1011 cm−2 in steps of 7 × 109 cm−2.

first plateau. These devices are exceptionally stable, without
the hysteresis or instabilities that occur in most modulation
doped devices.

3.2. Density dependence of the 0.7 structure

One of the main differences between electron and hole
quantum wires is the much larger effective interaction strength
rs in holes, which might be expected to have implications for
the 0.7 structure. To test the effects of interactions we have
studied the density dependence of the 0.7 structure in both
electron and hole systems. In 1D electron systems there are
conflicting reports about the density dependence: some studies
find the ‘0.7 structure’ moves closer to 0.5 × 2e2/h as the
density is decreased [21], others find that it moves towards
0.5 × 2e2/h as the density is increased [22], and some studies
show both trends [23].

As a reference, figure 4(a) shows the evolution of the
0.7 structure in an electron quantum wire as the 2D electron
density is varied with a back-gate bias [24]. Each trace
corresponds to a different 2D electron density, from 1.8 to
2.4 × 1011 cm−2 (rs = 1.3–1.1). The data show a weak
dependence of the 0.7 structure on the 2D density, with the
feature becoming more visible and moving to slightly higher
conductance as the electron density is increased and the 1D
confining potential becomes stronger due to the increasingly
negative side-gate bias (leftmost traces).

Figures 4(b) and (c) show the evolution of the 0.7 structure
in hole quantum wires with varying hole density. Figure 4(c)

shows data from a single heterojunction hole QPC similar to
that shown in figure 1(b). The top-gate bias alters the 2D hole
density p2D from 9.9 × 1010 cm−2 to 1.35 × 1011 cm−2 (left to
right, corresponding to rs = 13–11), with the 1D confinement
being stronger at the higher hole densities. Similar to the
data from electrons in figure 4(a) the 0.7 structure moves to
slightly higher conductance as the carrier density is increased
(rightmost traces). Figure 4(b) shows the evolution of the 0.7
structure in the modulation doped T483 quantum wire, as the
mid-gate bias is used to increase the hole density in the 1D
channel (from left to right). In this device there is no clear
variation of the 0.7 structure with VMG; if anything it appears
to get weaker as VMG is increased.

Overall, for both electron and hole quantum wires there
seems to be no clear variation in the visibility of the 0.7
structure, and conductance at which it occurs, with carrier
density. Furthermore despite rs in the electron and hole
samples differing by a factor of 5 or more, the data in
figures 4(a) and (c) look similar. This suggests that the 0.7
structure may be more sensitive to the potential landscape
and/or the disorder environment than to the strength of the
interactions.

3.3. Temperature dependence of the 0.7 structure

Figure 5 shows the temperature dependence of the ballistic
transport in the undoped and the modulation doped quantum
wire devices. Both show the same behaviour: increasing
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Figure 5. Temperature dependence of the 0.7 structure in hole quantum wires. (a) For the quantum well sample T483 with VMG = −0.225 V
and T = 20, 200, 320, 550, and 650 mK. (b) For the R165 single heterojunction, at VTG = −0.40 V ( p2D = 1.35 × 1011 cm−2) for T = 25,
175, 370, 515, 620, and 715 mK. Curves have been offset horizontally for clarity.
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Figure 6. (a) Conductance of the T483 quantum wire as a function of side-gate voltage VSG, for different values of the magnetic field applied
parallel to the wire (along [233]). Traces have been offset for clarity, and B‖ is increased in 0.2 T steps from 0 to 3.6 T. (b) Greyscale image of
the data, showing the evolution of the conductance plateaus as a function of the applied magnetic field. The colour axis is the
transconductance ∂g/∂VSG, with dark regions denoting the conductance plateaus.

the temperature rapidly weakens the single particle 1D
conductance plateaux, with the plateaux washed out by T ∼
700 mK. This strong temperature dependence is consistent
with measurements of the 1D subband spacing in these devices,
which gives �E ∼ 0.2–0.4 meV for the first few subbands,
significantly lower than the 1.5–3 meV found in comparable
electron systems [25]. The small subband spacings measured
in our hole wires are consistent with the large hole mass, since
�E ∝ 1/m∗ and m∗

h ≈ 5m∗
e .

In contrast to the single particle plateaus, the ‘0.7
structure’ becomes more prominent as the temperature is
increased, and moves closer to 0.5 × 2e2/h. Analogous
structure is also seen in the higher 1D subbands, for example
at ∼1.7 × 2e2/h in figure 5(a). Both of these observations are
consistent with the behaviour seen in 1D electron systems.

4. Anisotropic response of the 0.7 structure and zero
bias anomaly to an in-plane magnetic field

So far the data for hole quantum wires looks remarkably
similar to that for electron quantum wires, despite the
much stronger hole–hole interactions. We now turn to the
effects of an in-plane magnetic field applied parallel to the
heterojunction, which are quite different for electrons and
holes.

4.1. Evolution of the 0.7 structure with in-plane magnetic field

For hole quantum wires the Zeeman splitting of the 1D
subbands is highly dependent on the orientation of the
magnetic field, due to the strong spin–orbit coupling in the
valence band. For quantum wires fabricated on (311)A
heterostructures the interplay of the confinement potential
and the crystal anisotropy means that the Zeeman splitting
is much larger when the magnetic field is applied parallel
to the quantum wire (along [233]), than when it applied
perpendicular to the quantum wire (along [011]) [26]. This is
quite different to 1D electrons, where the Zeeman splitting has
been shown to be isotropic and independent of the direction of
the in-plane field [3]. We use this extreme anisotropy of the
spin splitting in 1D holes to probe the 0.7 structure: if it is
related to spin, then it too should show an anisotropic response
to an in-plane magnetic field.

Figure 6(a) shows the conductance of the T483 quantum
wire for different magnetic fields applied parallel to the wire.
At zero magnetic field the conductance is quantized in units
of 2e2/h, with a clear feature at 0.7 × 2e2/h. The magnetic
field rapidly lifts the spin degeneracy of the hole subbands: at
B = 2 T the spin-split conductance plateaus can clearly be
resolved, and by B = 3.6 T they are as strong as the i × 2e2/h
plateaus. By 7 T the spin splitting of the 1D subbands is
comparable to the subband spacing �E , and 1D subbands with
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Figure 7. (a) Conductance of the T483 quantum wire as a function of side-gate voltage VSG, for different values of the magnetic field applied
perpendicular to the wire (along [011]). Traces have been offset for clarity, and B⊥ is increased in 0.2 T steps from 0 to 4 T. (b) Greyscale
image of the data, showing the evolution of the conductance plateaus as a function of the applied magnetic field. The colour axis is the
transconductance ∂g/∂VSG, with dark regions denoting the conductance plateaus. (c), (d) show measurements repeated after the device has
been thermally cycled to room temperature and back to base temperature.

different spin orientations cross each other. Figure 6(b) shows
a graphical representation of the evolution of the conductance
plateaus as a function of parallel magnetic field. The dark
regions represent the conductance plateaus. At B‖ = 0 there
are plateaus at 1 × 2e2/h and 2 × 2e2/h, as well as a clear
feature at 0.7 × 2e2/h that rapidly evolves to 0.5 × 2e2/h as
the magnetic field is increased.

The behaviour of the hole quantum wire is quite different
when the in-plane magnetic field is applied perpendicular to
the wire, along the [011̄] direction. In order to study this
the sample was thermally cycled and reoriented with respect
to the magnet axis. To verify that the properties of the
quantum wire were not affected by this thermal cycling, the
1D subband spacings were measured after each cool-down, and
were found to be constant to within our experimental accuracy
of 5%. Figure 7 shows the conductance of the quantum wire
for different perpendicular magnetic fields. In contrast to the
measurements in a parallel magnetic field, the perpendicular
field appears to have almost no effect on the 1D subbands. The
integer plateaus at 1×2e2/h and 2×2e2/h at B⊥ = 0 show no
signs of spin splitting by B⊥ = 4 T, whereas they are fully spin
resolved in a parallel magnetic field of B‖ = 2 T.7 The lack
of spin splitting can be seen very clearly in figure 7(b), which
shows the same graphical representation of the evolution of the
conductance plateaus as depicted in figure 6(b). We thermally
cycled the device and repeated these measurements to confirm
this data (figures 7(a) and (c)), obtaining the same outcome in

7 We limit our analysis to low magnetic fields, as the magnetic length becomes
very small at higher B , and bandstructure effects become more complex.

both measurements—the spin splitting of the 1D subbands is
highly anisotropic due to the strong spin–orbit coupling.

The 0.7 structure, which can be seen weakly in figure 7(a),
and more strongly after thermal cycling in figure 7(c), is also
relatively unaffected by the parallel magnetic field. Since
the higher 1D subbands show a highly anisotropic Zeeman
spin splitting, the observation that the 0.7 structure shares this
anisotropy strongly suggests that this feature is spin related.

4.2. The zero bias anomaly in hole quantum wires

We now turn to the non-equilibrium properties of the 0.7
structure, with the application of a finite dc source–drain bias
VSD. In electron systems it has been shown that the 0.7
structure is accompanied by an enhanced conductance at zero
source–drain bias, which falls away rapidly as the magnitude
of the source–drain bias is increased [27]. The resulting
conductance peak at VSD = 0 is a characteristic signature of an
anomaly in the density of states at the Fermi energy, and shares
many of the features of the zero bias anomaly (ZBA) observed
in quantum dots: it is suppressed by increasing the temperature
and by an in-plane magnetic field. This has lead to suggestions
that the 0.7 structure arises from a Kondo-like correlated state,
where an electron is localized in the wire [5, 6], although very
recently it has been suggested that the Kondo-like behaviour
and the 0.7 feature are separate effects in electron quantum
wires [28].

In figure 8 we investigate the zero bias anomaly observed
in the T483 quantum wire [29]. Figure 8(a) shows the
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Figure 8. The zero bias anomaly (ZBA) in a hole quantum wire.
(a) The differential conductance is plotted as a function of applied
source–drain bias, for different values of VSG. (a) At B = 0 and
T = 20 mK a clear peak is seen around VSD = 0, highlighted by the
bold trace. (b) Increasing the temperature to 320 mK suppresses the
ZBA. (c) An in-plane magnetic field of 3.6 T lifts the spin degeneracy
and also kills the ZBA peak. (d) In contrast a perpendicular magnetic
field of 3.6 T does not lift the spin degeneracy, and the ZBA remains.

differential conductance as a function of source–drain bias for
several different values of the side-gate bias VSG. A clear peak
centred around VSD = 0 is seen for conductances below 2e2/h,
as indicated by the bold trace. Increasing the temperature
to T = 320 mK eliminates the ZBA (figure 8(b)), which is
much more sensitive to temperature than the ZBA observed in
electron samples [27].

We can use the anisotropic spin splitting of the 1D hole
subbands to test whether the zero bias anomaly is spin related,
and whether it has the same anisotropy as the 0.7 structure.
Figure 8(c) shows the effect of a 3.6 T parallel magnetic field
on the zero bias anomaly. This field lifts the spin degeneracy of
the 1D subbands, and suppresses the ZBA. However if the same
magnetic field is applied perpendicular to the quantum wire, as
shown in figure 8(d), the Zeeman splitting of the integer 1D
subbands is much weaker, and we find that the ZBA is still
present. These results strongly suggest that the destruction of
the zero bias anomaly is spin related, and that the ZBA and 0.7
structure are intimately related.

5. Summary

In summary, we have studied the 0.7 structure and zero bias
anomaly in high quality hole quantum wires. Interaction
effects should be much stronger in these systems, because
of the enhanced hole effective mass. Yet the zero magnetic
field data for electron and hole quantum wires are strikingly
similar, with a clear 0.7 structure that becomes stronger with
increasing temperature. However unlike 1D electron systems

the Zeeman splitting caused by an in-plane magnetic field is
highly anisotropic for 1D holes, due to the strong spin–orbit
coupling. We have shown that both the 0.7 structure and the
ZBA share this anisotropic response to an in-plane magnetic
field. These results suggest that the 0.7 structure and the ZBA
are directly linked, and that they are both related to spin.

Our data also provide new constraints to test several of
the proposed models for the 0.7 structure. Firstly, since the
phonon coupling is very different for holes and electrons, it is
unclear whether models involving acoustic phonon scattering
can explain the data both in electrons and holes [4]. Secondly,
it is not obvious that the Kondo model [5] can be applied to
hole systems when only the m J = 3/2 band is occupied. More
work is needed to understand the electronic and spin properties
of holes confined to 1D systems, but already it is clear that 1D
holes have unusual spin properties with no counterpart in spin-
1/2 electron systems.
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